5,931 research outputs found

    Including spatial distribution in a data-driven rainfall-runoff model to improve reservoir inflow forecasting in Taiwan

    Get PDF
    Multi-step ahead inflow forecasting has a critical role to play in reservoir operation and management in Taiwan during typhoons as statutory legislation requires a minimum of 3-hours warning to be issued before any reservoir releases are made. However, the complex spatial and temporal heterogeneity of typhoon rainfall, coupled with a remote and mountainous physiographic context makes the development of real-time rainfall-runoff models that can accurately predict reservoir inflow several hours ahead of time challenging. Consequently, there is an urgent, operational requirement for models that can enhance reservoir inflow prediction at forecast horizons of more than 3-hours. In this paper we develop a novel semi-distributed, data-driven, rainfall-runoff model for the Shihmen catchment, north Taiwan. A suite of Adaptive Network-based Fuzzy Inference System solutions is created using various combinations of auto-regressive, spatially-lumped radar and point-based rain gauge predictors. Different levels of spatially-aggregated radar-derived rainfall data are used to generate 4, 8 and 12 sub-catchment input drivers. In general, the semi-distributed radar rainfall models outperform their less complex counterparts in predictions of reservoir inflow at lead-times greater than 3-hours. Performance is found to be optimal when spatial aggregation is restricted to 4 sub-catchments, with up to 30% improvements in the performance over lumped and point-based models being evident at 5-hour lead times. The potential benefits of applying semi-distributed, data-driven models in reservoir inflow modelling specifically, and hydrological modelling more generally, is thus demonstrated

    Superresolution Pattern Recognition Reveals the Architectural Map of the Ciliary Transition Zone

    Get PDF
    The transition zone (TZ) of primary cilia serves as a diffusion barrier to regulate ciliogenesis and receptor localization for key signaling events such as sonic hedgehog signaling. Its gating mechanism is poorly understood due to the tiny volume accommodating a large number of ciliopathy-associated molecules. Here we performed stimulated emission depletion (STED) imaging of collective samples and recreated superresolved relative localizations of eight representative species of ciliary proteins using position averages and overlapped with representative electron microscopy (EM) images, defining an architectural foundation at the ciliary base. Upon this framework, transmembrane proteins TMEM67 and TCTN2 were accumulated at the same axial level as MKS1 and RPGRIP1L, suggesting that their regulation roles for tissue-specific ciliogenesis occur at a specific level of the TZ. CEP290 is surprisingly localized at a different axial level bridging the basal body (BB) and other TZ proteins. Upon this molecular architecture, two reservoirs of intraflagellar transport (IFT) particles, correlating with phases of ciliary growth, are present: one colocalized with the transition fibers (TFs) while the other situated beyond the distal edge of the TZ. Together, our results reveal an unprecedented structural framework of the TZ, facilitating our understanding in molecular screening and assembly at the ciliary base

    The Essential Interactions in Oxides and Spectral Weight Transfer in Doped Manganites

    Get PDF
    We calculate the value of the Fr\"ohlich electron-phonon interaction in manganites, cuprates, and some other charge-transfer insulators and show that this interaction is much stronger than any relevant magnetic interaction. A polaron shift due to the Fr\"ohlich interaction, which is about 1 eV, suggests that carriers in those systems are small (bi)polarons at all temperatures and doping levels, in agreement with the oxygen isotope effect and other data. An opposite conclusion, recently suggested in the literature, is shown to be incorrect. The frequency and temperature dependence of the optical conductivity of ferromagnetic manganites is explained within the framework of the bipolaron theory.Comment: 6 pages, REVTeX 3.1 with 3 eps-figures. Journal versio

    Correlation between the residual resistance ratio and magnetoresistance in MgB2

    Full text link
    The resistivity and magnetoresistance in the normal state for bulk and thin-film MgB2 with different nominal compositions have been studied systematically. These samples show different temperature dependences of normal state resistivity and residual resistance ratios although their superconducting transition temperatures are nearly the same, except for the thin-film sample. The correlation between the residual resistance ratio (RRR) and the power law dependence of the low temperature resistivity, rho vs. T^c, indicates that the electron-phonon interaction is important. It is found that the magnetoresistance (MR) in the normal state scales well with the RRR, a0(MR) proportional to (RRR)^2.2 +/- 0.1 at 50 K. This accounts for the large difference in magnetoresistance reported by various groups, due to different defect scatterings in the samples.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B (July 6, 2001; revised September 27, 2001); discussion of the need for excess Mg in processing and of the power law dependence of the low temperature resistivity added in response to referee's comment

    EEG-Based Brain-Computer Interfaces Are Vulnerable to Backdoor Attacks

    Full text link
    Abstract Research and development of electroencephalogram (EEG) based brain-computer interfaces (BCIs) have advanced rapidly, partly due to the wide adoption of sophisticated machine learning approaches for decoding the EEG signals. However, recent studies have shown that machine learning algorithms are vulnerable to adversarial attacks, e.g., the attacker can add tiny adversarial perturbations to a test sample to fool the model, or poison the training data to insert a secret backdoor. Previous research has shown that adversarial attacks are also possible for EEG-based BCIs. However, only adversarial perturbations have been considered, and the approaches are theoretically sound but very difficult to implement in practice. This article proposes to use narrow period pulse for poisoning attack of EEG-based BCIs, which is more feasible in practice and has never been considered before. One can create dangerous backdoors in the machine learning model by injecting poisoning samples into the training set. Test samples with the backdoor key will then be classified into the target class specified by the attacker. What most distinguishes our approach from previous ones is that the backdoor key does not need to be synchronized with the EEG trials, making it very easy to implement. The effectiveness and robustness of the backdoor attack approach is demonstrated, highlighting a critical security concern for EEG-based BCIs.</jats:p

    Double-exchange is not the cause of ferromagnetism in doped manganites

    Full text link
    The coexistence of ferromagnetism and metallic conduction in doped manganites has long been explained by a double-exchange model in which the ferromagnetic exchange arises from the carrier hopping. We evaluate the zero-temperature spin stiffness D(0) and the Curie temperature T_{C} on the basis of the double-exchange model using the measured values of the bare bandwidth W and the Hund's rule coupling J_{H}. The calculated D(0) and T_{C} values are too small compared with the observed ones even in the absence of interactions. A realistic onsite interorbital Coulomb repulsion can reduce D(0) substantially in the case of a 2-orbital model. Furthermore, experiment shows that D(0) is simply proportional to x in La_{1-x}Sr_{x}MnO_{3} system, independent of whether the ground state is a ferromagnetic insulator or metal. These results strongly suggest that the ferromagnetism in manganites does not originate from the double-exchange interaction. On the other hand, an alternative model based on the d-p exchange can semi-quantitatively explain the ferromagnetism of doped manganites at low temperatures.Comment: 6 pages, 3 figures, some modifications in scientific content

    BSRS-5 (5-item Brief Symptom Rating Scale) scores affect every aspect of quality of life measured by WHOQOL-BREF in healthy workers

    Get PDF
    This study aims to evaluate and quantify the possible effect of psychological symptoms on healthy workers' quality of life (QOL). The workers were recruited from a factory in south Taiwan. We assessed their psychological symptoms with a 5-item brief symptom rating scale (BSRS-5) and measured the QOL using the Taiwanese version of the World Health Organization Quality of Life (WHOQOL)-BREF. Multiple linear regression analysis was conducted to explore the association between the two tools after control of confounding by other predictors. A total of 1,080 workers , who attended a physical examination, completed questionnaires and informed consent forms. Scores on the BSRS-5 significantly predicted scores in each domain and items of the WHOQOL-BREF. The magnitude of psychological domain score seemed to be affected the most; every 1 point increase in BSRS-5 was associated with a 0.39 raw score (equivalent to 2. 44 percentile) decrease in QOL. The sleep facet of WHOQOL appeared to have the highest association, followed by items of negative feelings, energy, and concentration. The BSRS-5 score is predictive for scores of all four domains and 26 items of the Taiwanese version of the WHOQOL-BREF for regular factory workers

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
    corecore